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UberCloud AI Case Studies 

 
 
More than 210 HPC cloud experiments, 100 case studies, and a ton of hands-on experience gained in High 
Performance Computing (HPC) in the Cloud, that’s the harvest of six years of UberCloud* HPC Experiments, 
enabling us to measure cloud computing progress, objectively. Looking back these six years, at our first 50 
cloud experiments in 2012, 26 of them failed or didn’t finish, and the average duration of the successful 
ones was about three months. Six years later, in 2019, looking at our last 50 cloud experiments, none of 
them failed anymore; and the average duration of these experiments is now just about three days. That 
includes defining the application use case, preparing and accessing the engineering application software in 
the cloud, uploading the engineer’s data, running simulation jobs (interactive and batch), evaluating the 
data via remote visualization, transferring the results back on premise, writing and publishing a case study.  
 
The goal of the UberCloud* Experiment is to perform engineering simulation experiments in the HPC cloud 
with real engineering applications, in order to understand the roadblocks to success and how to overcome 
them, and to help educate our engineering community about the relatively young field of HPC in the 
Cloud. Our UberCloud* Compendiums of Case Studies (10 e-books so far) are a way of sharing these results 
with our broader community of engineers and scientists and their service providers. 
 
Our community of engineers and scientists is currently joining the new wave of artificial intelligence (AI). 
According to IDC the expected world-wide investment in AI is 19.1 billion USD in 2018, an increase of 54.2% 
compared to 2017. Industry segments that invest aggressively in projects that use AI software capabilities 
will drive the investments to 52.2 billion USD by 2021, an average CAGR of 46.2% in the time interval 
between 2016 and 2021. In addition, the three largest use cases for AI in discrete manufacturing are 
expected to be predictive maintenance, quality management, and recommendations systems. 
 
This 20th UberCloud* Compendium is dealing with AI, in an introductory and educational way. For helping 
to educate our engineering community in this relatively young field of AI in Engineering we have selected 
four use cases, about predictive maintenance, and deep learning and computational fluid dynamics.  
 
We are very grateful for all the support for our UberCloud* AI Experiments by our technology partners 
Hewlett Packard Enterprise and Intel, and our Media Sponsor HPCwire. 
 
Wolfgang Gentzsch, Burak Yenier, and Joseph Pareti 
The UberCloud, Los Altos, CA, June 2019 
 
 
 
*)  UberCloud is the online community, marketplace, and application container factory, where engineers discover, try, 
and buy HPC as a Service, on demand. Engineers can explore how to use this additional computing power to solve their 
demanding problems, better, faster, cheaper, and identify roadblocks and solutions jointly with our engineering and 

scientific community. Learn more about the UberCloud and our services at: http://www.TheUberCloud.com. 
 

Please contact UberCloud at help@theubercloud.com before distributing this material in part or in full. 
© Copyright 2019 TheUberCloud™. UberCloud is a trademark of TheUberCloud, Inc. 
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Team 211 
 

Deep Learning for Steady-State Fluid Flow 
Prediction in the Advania Data Centers Cloud 

 

                      
  

1   MEET THE TEAM 
End-User: Jannik Zuern, Renumics GmbH, Karlsruhe, Germany 
Software Provider: OpenFOAM open source CFD software 
Resource Provider: Advania Data Centers Cloud, Iceland  
HPC and AI Experts: Stefan Suwelack, Markus Stoll, and Jannik Zuern, Renumics; Joseph Pareti, AI 
Consultant; and Ender Guler, UberCloud Inc.  
 

2   USE CASE 
Solving fluid flow problems using Computational Fluid Dynamics (CFD) is demanding both in terms of 
computer power and in terms of simulation duration. Artificial neural networks (ANN) can learn 
complex dependencies between high-dimensional variables. This ability is exploited in a data-driven 
approach to CFD that is presented in this case study. An ANN is applied in predicting the fluid flow 
given only the shape of the object that is to be simulated. The goal of the approach is to apply an 
ANN to solve fluid flow problems to significantly decrease time-to-solution while preserving much of 
the accuracy of a traditional CFD solver. Creating a large number of simulation samples is paramount 
to let the neural network learn the dependencies between simulated design and flow field around it.  
 
This project between Renumics GmbH and UberCloud Inc. explores the benefits of additional cloud 
computing resources that can be used to create a large amount of simulation samples in a fraction of 
the time a desktop computer would need to create them. In this project, we want to explore 
whether the overall accuracy of the neural network can be improved when more samples are being 
created in the UberCloud Container und then used during the training of the neural network. 
UberCloud kindly provided the cloud infrastructure, a CentOS Docker container with an OpenFOAM 
installation, and additional tech support during the project development. 
 

3   WORKFLOW OVERVIEW 
In order to create the simulation samples automatically, a comprehensive workflow was established.  
 
As a first step, random two-dimensional shapes are created. These shapes have to be diverse 
enough to let the neural network learn the dependencies between different kinds of shapes and 
their respective surrounding flow fields. 

“The overhead of creating high 

volumes of samples can be 

effectively compensated by the 

high-performance containerized 

computing environment provided 

by UberCloud and Advania.” 
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In the second step, these shapes are meshed and added to an OpenFOAM simulation case template 
(Fig. 1). This template is simulated using the steady-state solver OpenFOAM solver simpleFOAM. 

Figure 1: Simulation setup. The flow enters the simulation domain through the inlet, flows around 
the arbitrarily shaped obstacle (grey shade) and leaves the simulation domain through the outlet. 

 
The third step post-processed the simulation results using open-source visualization ParaView. The 
flow-fields are resampled on a rectangular grid to simplify information processing by the neural net.  
 
In the fourth step the simulated design and the flow fields are fed into the input queue of the neural 
network which, after training, is able to infer a flow field merely from seeing the to-be-simulated 
design. 
 

 
Figure 2: Four-step Deep Learning workflow. 

Hardware specs 
The hardware specs of the Advania Data Centers compute node hosting UberCloud’s container are: 

• 2 x 16 core Intel Xeon CPU E5-2683 v4 @ 2.10 GHz and 251 GB memory, no GPU 
 

The hardware specs of the previously used desktop workstation are as follows: 

• 2 x 6 core Intel i7-5820K CPU @ 3.30 GHz, and 32 GB memory 

• GPU: GeForce GTX 1080 (8GB GDDR5X memory) 
 

4   RESULTS 
Time needed to create samples 
As a first step, we compared the time it takes to create samples on the desktop workstation 
computer with the time it takes to create the same number of samples on the UberCloud container. 
Figure 3 illustrates the difference in time it took to create 10,000 samples. On the desktop computer 
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it took 13h 10min to create these 10,000 samples. In the UberCloud OpenFOAM container in the 
Advania Data Centers Cloud, it took about 2h 4min to create 10,000 samples, which means that a 
speedup of 6.37 could be achieved using the UberCloud container. 

                                                    

 Local machine UberCloud container 

Figure 3: Comparison (in minutes) between Local machine and UberCloud container. 
 

Neural Network performance evaluation 
A total of 70,000 samples were created. We compare the losses and accuracies of the neural 
network for different training set sizes. In order to determine the loss and the accuracy of the neural 
network, we first must define, what these terms actually mean. 
 

 
Figure 4: Performance and speedup of flow simulations with neural network prediction. 

 

Definitions 
Loss:  The loss of the neural network prediction describes how wrong the prediction of the neural 
network was. The output, or prediction, of the neural network in our project is a N ×M ×2 tensor 
since the network tries to predict a fluid flow field with N elements in x-direction, M elements in y-
direction, and two flow velocity components (velocity in x-direction and velocity in y-direction). A 
mean-squared-error metric was used to calculate the loss l: 
 

  (1) 
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where dij denotes the ground-truth velocity component in dimension d at the grid coordinates (i,j), 

dij denotes the predicted velocity component at the same position and in the same dimension. The 

goal of every machine learning algorithm is to minimize the loss of the neural network using 
numerical optimization schemes such as Stochastic Gradient Descent. Thus, a loss of 0.0 for all 
samples would mean that every flow velocity field in the dataset is predicted perfectly. 

 
Accuracy:  In order to be able to make sensible statements about the validity of the prediction of the 
neural network, metrics have to be defined that describe the level of accuracy that the neural 
network achieves. In general, the accuracy of a neural network describes how accurate the 
prediction of the neural network was. While the loss of a neural network is the metric that is being 
minimized during training, a small prediction loss does not necessarily mean that the corresponding 
prediction is physically meaningful. In general, however, a small prediction loss usually corresponds 
with a high accuracy. Different measurements of how accurate the outputs of the neural network 
are needed to express the validity of the predictions. A highly accurate prediction should have high 
values for all formulated accuracy measurements and a low loss at the same time. These accuracies 
can have values between 0.0 and 1.0, where an accuracy of 0.0 indicates that the prediction of the 
neural network does not at all coincide with the ground truth flow metric that is examined, and an 
accuracy of 1.0 means that the prediction coincides perfectly with the ground truth flow metric. Bear 
in mind that a low loss does not necessary cause high accuracy and vice versa. However, the two 
measurements are usually correlated. 

 
In this study, two different accuracies were evaluated: Divergence accuracy and Drag accuracy: 

• Divergence accuracy:  Numerical CFD solvers aim to find a solution to the continuity equation 
and the momentum equation. For an incompressible fluid, the continuity equation dictates that 
the divergence of the velocity vector field is zero for every point in the simulation domain. This 
follows the intuition that at no point in the simulation domain fluid is generated (divergence 
would be greater than zero) or ceases to exist (divergence would be smaller than zero). By 
design, the Finite Volume Method preserves this property of the fluid even in a discretized form. 
A data-driven approach should as well obey this rule. 
 

• Cell accuracy:  The number of correctly predicted grid cells in the two- or three-dimensional grid 
yields an intuitive metric for how well the neural network predicts fluid flow behavior. As the 
network will never be able to predict the fluid flow velocity down to the last digit of a floating-
point number, the following approach is proposed: If the relative error between the network 
prediction and the actual flow velocity is smaller than 5%, the respective grid cell is declared as 
predicted correctly. The cell accuracy can be calculated by counting the number of correctly 
predicted grid cells and dividing the results by the total number of grid cells. 

 
5   TRAINING RESULTS 
The generated samples are divided into the training and validation datasets. The training- and 
validation loss for different numbers of training samples was evaluated. Concretely, the neural net 
was trained three times from scratch with 1,000, 10,000, and 70,000 training samples respectively.  
The following training parameters were used for all neural network training runs: 

• Batch size: 32 

• Dropout rate: 0.5 

• Learning rate: 5×10−4 



UberCloud AI Case Studies 2019 

8 
 

 

 

Training loss 
Validation loss 

 

Figure 5: Loss after 50,000 training steps. 
 

It can be observed that both training- and validation losses are lowest for the 70k samples training 
and are highest for the 1k training samples. The more different samples the neural network 
processes during the training process the better faster it is able to infer a flow velocity field from the 
shape of the simulated object suspended in the fluid. The validation loss tends to be higher than the 
training loss for all tested numbers of samples, which is a typical property of machine learning 
algorithms. Figure 6 shows the loss after 300,000 training steps: 
 

 

 

Training loss 
Validation loss 

 

Figure 6: Loss after 300,000 training steps. 
 
Surprisingly, the final training- and validation losses for the 70k samples training session are as low 
as the losses for the 1k samples training session. Generally speaking, no clear tendency towards 
lower losses when increasing the set of the training samples could be observed. This result is 
somewhat surprising since we expected the final losses at the end of the training process to show a 
similar tendency towards lower losses for higher numbers of samples. We assume that the number 
of samples does not heavily influence the final loss for extensive training sessions with many 
hundreds of thousand training steps. Finally, in Figure 7 the divergence and grid accuracies are 
visualized. 
 

 

 

Divergence accuracy  
Grid cell accuracy 

 

       Figure 7: Validation accuracies after training. 
 

Both the divergence accuracy and the grid cell accuracy show higher values for larger numbers of 
samples. While the divergence accuracy shows overall high values going from 0.94 for 1,000 samples 
to 0.98 for 70,000 samples, the grid cell accuracy also increases from a value of 0.53 for 1,000 
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samples to a value 0.66 for 70,000 samples. To recap: a grid accuracy of 0.66 means that 
approximately two thirds of all velocity grid cells were predicted correctly within 5% relative error to 
the correct value. 
 
Figure 8 illustrates the difference between the ground truth flow field (left image) and the predicted 
flow field (right image) for one exemplary simulation sample after 300,000 training steps. The arrow 
direction indicates the flow direction and the arrow color indicates the flow velocity. Visually, no 
difference between the two flow fields can be made out. 
 
 

 
 

Figure 8: Exemplary simulated flow field (left image) and predicted flow field (right image). 

 
CONCLUSION 
We were able to prove a mantra amongst machine learning engineers: The more data the better. We 
showed that the training of the neural network is substantially faster using a large dataset of 
samples compared to smaller datasets of samples. Additionally, the proposed metrics for measuring 
the accuracies of the neural network predictions exhibited higher values for the larger numbers of 
samples. The overhead of creating high volumes of additional samples can be effectively 
compensated by the high-performance containerized (based on Docker) computing node provided 
by UberCloud on the Advania Data Centers Cloud. A speed-up of more than 6 compared to a state-
of-the-art desktop workstation allows creating the tens of thousands of samples needed for the 
neural network training process in a matter of hours instead of days. 
 
In order to train more complex models (e.g. for transient 3D flow models) much more training data 
will be required. Thus, software platforms for training data generation and management as well as 
flexible compute infrastructure will become increasingly important.  
 

 
Case Study Author – Jannik Zuern, Renumics GmbH 

 
 
 
 
 
 
 
 



UberCloud AI Case Studies 2019 

10 
 

Team 212 

Demonstrating a Machine Learning Model for 
Predictive Maintenance on Microsoft Azure 

 

              
     Figure 1: Infographics: https://goo.gl/cv7vLp  

 
MEET THE TEAM 
End-User: Joseph Pareti, Artificial Intelligence Consultant 
Software Provider: Open source Predictive Maintenance template provided by the Microsoft Azure 
Team 
Resource Provider: Microsoft Azure Cloud 
UberCloud Support: Wolfgang Gentzsch, President, The UberCloud 
Microsoft Support: Yassine Khelifi, Support Escalation Engineer at Microsoft. 
 

INTRODUCTION: HOW TO USE THIS DOCUMENT  
The main purpose of this work is to create awareness on what is possible with machine 
learning in the manufacturing industry, and hence we picked a predictive maintenance use 
case. Next, there are 2 classes of users: 
 

1. Developers need to follow through all steps described in the next paragraphs. You 
will do data ingestion, features engineering and train a Machine Learning model that 
can then be used to predict a machine likelihood of failure within a specified time 
window. If you are a developer, you need to work all notebooks. You will also need a 
front-end system (like a Windows PC running the Azure Machine Learning 
Workbench) and a back-end system such as a Data Science Virtual Machine in the 
Azure Cloud. 

2. End-users who want to just consume the application as a service will need the 
assets files and a Docker image running on e.g. an Ubuntu server. Please send a 
request for the assets files to joepareti54@gmail.com or 0049 1520 1600 209. 

 
USE CASE 
The Predictive Maintenance model described in this report is open source and can be 
applied to different equipment types for which telemetry data and maintenance data 
records are available. A demo version is described in the following paragraphs and it is 

“This Machine Learning study is 

for predictive maintenance 

demonstration and learning 

purposes, and may be used as a 

baseline for the reader’s custom 

applications.” 

 

 

 

 

https://goo.gl/cv7vLp
mailto:joepareti54@gmail.com
https://github.com/Azure/MachineLearningSamples-PredictiveMaintenance
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based on specific prerequisites. Customization of the model to real customers’ case1 is out 
of scope for this report but can be done on a project basis, explained in the conclusion/ 
recommendations paragraph. 
 
The demo version is based on the following assumptions: 4 machine types are considered, 
each machine has 4 components, and there is telemetry data available on voltage, vibration, 
speed, etc. as well as maintenance records (indicating when components were replaced on 
what machine), error logs (not necessarily implying failure), machine characteristics, and 
how long each machine has been in service. The model is built in 4 stages each of which is a 
Jupyter Notebook: 
 

1. Data ingestion 
2. Feature engineering 
3. ML model 
4. Operationalization 

 
Notebook 1, Data ingestion, is about accessing datasets and converting data into py-spark 
data-frames that are stored in Azure storage container (AKA blob storage), so that the data 
is accessed in the next notebook. The demo version uses pandas as source data from a SQL 
server in github, but it can obviously be replaced with customer’s data. 
 
Notebook 2, Feature engineering, loads the data sets created in Notebook 2 from an Azure 
storage container and combines them to create a single data set of features (variables) that 
can be used to infer a machine health condition over time. The notebook steps through 
several feature engineering and labeling methods to create this data set for use in the 
predictive maintenance machine learning solution. 
The goal is to generate a single record for each time unit within each asset. The record 
combines features and labels to be fed into the machine learning algorithm. 
Predictive maintenance takes historical data, marked with a timestamp, to predict current 
health of a component and the likelihood of failure within some future window of time. 
These problems can be characterized as a classification method involving time series data. 
Time series, since we want to use historical observations to predict what will happen in the 
future. Classification, because we classify the future as having a likelihood of failure. 
 
Notebook 3, The ML model, uses the labeled feature data set constructed in Notebook 2, it 
loads the data from the Azure Blob container and splits it into a training and test data set. 
We then build a machine learning model (a decision tree classifier or a random forest 
classifier) to predict when different components within our machine population will fail.  
Two different classification model approaches are available in this notebook: 
 

• Decision Tree Classifier: Decision trees and their ensembles are popular methods for 
the machine learning tasks of classification and regression. Decision trees are widely 
used since they are easy to interpret, handle categorical features, extend to the 

                                                           
1 Customization may mean working with different datasets (this is the easiest step), or changing the data 
structure and ML model according to customers’ needs. 

https://docs.microsoft.com/en-us/azure/machine-learning/desktop-workbench/scenario-predictive-maintenance
http://jupyter.org/
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multiclass classification setting, do not require feature scaling, and are able to 
capture non-linearities and feature interactions. 

• Random Forest Classifier: A random forest is an ensemble of decision trees. Random 
forests combine many decision trees in order to reduce the risk of overfitting. Tree 
ensemble algorithms such as random forests and boosting are among the top 
performers for classification and regression tasks. 

 
Notebook 4, Operationalization is about deploying the model into a Docker container for 
users to consume it as-a-web service. We propose an Ubuntu implementation.  
 
Finally, some test cases have been run, and the relevance of input data on machine failures 
is shown. 
 
SYSTEM ARCHITECTURE 
The Predictive Maintenance application consists of three components:  
 

1. A front-end application, Azure Machine Learning Workbench (AML), that runs on a 
local system, in my case a Windows 10 laptop 
 

2. A back-end system, a Data Science Virtual Machine (DSVM) in the Azure cloud. The 
main advantage of working with a DSVM is that all required software components 
for ML are pre-installed and maintained by Microsoft. Moreover, you can configure 
the DSVM to fulfill your needs, in my case I selected the minimum required 
configuration, minimum cost, in terms of number of vCPUs, memory, local storage 
since the exercise was not intended to measure any performance data 

 
3. A blob-storage account (in Azure) to host the intermediate data that are transferred 

from one notebook to the other. 
  
The front-end and back-end applications interact over the internet; a stable standard 
configuration Wireless LAN has proven to be adequate for the job. If your network is 
unstable, you may face some issues that are described in Figure 4 in the Appendix of this 
report. 
 
DEVELOPER VIEW 
If you are a developer, you need to go through all steps starting with data ingestion, next 
you do feature engineering, and finally you train the model. The basic tool that will guide 
you all along is the Jupyter Notebook that will be started in AML. 
 
You create a new project in AML, and then select the General Predictive Maintenance 
scenario2; AML comes with on-line documentation to guide you through the steps. You need 
to first ensure that the DSVM is up and running so that the front-end can attach to it via 
remote Docker. On the front-end, you need a CLI: you can use power shell (which I 
recommend), or the DOS command interface to do the basic startup commands: 

                                                           
2 Microsoft provides 2 Predictive Maintenance templates: the other one is Deep Learning for PdM which is 
however oversimplified. 

https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-installation
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoft-ads.linux-data-science-vm-ubuntu
https://www.dataquest.io/blog/jupyter-notebook-tutorial/


UberCloud AI Case Studies 2019 

13 
 

 

 
Figure 1: Preparation steps on the AML front-end application (please enlarge your document). 

 

RESULTS 
The result of this study is a demo version that runs in a Docker container. Please contact me 
(joepareti54@gmail.com) if you want to test it yourself. In addition, I can provide workshops on AI 
applications for CAE and manufacturing. 
 

PERFORMANCE BENCHMARKING 
This is out-of-scope for the current project. On my DSVM, the by far most time-consuming part of 
the application is Notebook 2 (feature engineering), which takes 71 minutes to complete: table joins 
and label construction run on all 4 vCPUs in the DSVM. Notebook 3, model training, takes 
approximately 10 minutes. If you plan to use a larger data-set we will need to size the system, 
preferably with GPUs. 
 

BENEFITS 
In general, the benefits of avoiding down time of costly equipment, avoiding loss of business 
due to poor response time, or damage to a provider’s reputation due to service outages, are 
self-explanatory. Machine Learning is an effective technology to accomplish those goals.  
According to Forbes3, improving preventative maintenance and Maintenance, Repair and 
Overhaul (MRO) performance with greater predictive accuracy to the component and part-
level is one of the 10 ways ML is revolutionizing manufacturing. 
 
There are several implementations of Predictive Maintenance (PdM) using ML techniques 
out there. The following lists some PdM applications I came to know in a short space of 
time: 
 

1. Rapidminer 
2. Mathworks for Predictive Maintenance 

• Toolbox for tasks such as RUL estimation, condition parameters design, 
statistical methods, ML, features extraction from data, label construction for 
supervised training, etc. 

• Toolbox means the user must build the application 
• Use cases for rolling bearings, gearbox, pumps, etc. 
• Ability to simulate failure data using number crunching code from Mathworks 

                                                           
3 https://www.forbes.com/sites/louiscolumbus/2016/06/26/10-ways-machine-learning-is-revolutionizing-
manufacturing/#12fa1af328c2 

mailto:joepareti54@gmail.com
https://www.youtube.com/watch?v=HRJXOyuFY1M&t=3070s
https://www.mathworks.com/products/predictive-maintenance.html
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3. Vargroup 
4. Microsoft 
5. General Electric 

The benefits of working with the PdM model presented in this report instead of starting 
from scratch are:  
 

(i) open source code,  
(ii) extensive debugging and testing on the demo version, and  
(iii) a core team of experts has been identified. 

 
CONCLUSION & RECOMMENDATIONS 
The subject matter of this report is an open source implementation of PdM, as such 
customers have free access to the code. Users are encouraged to approach us, and test the 
demo version “as-is” to evaluate how well it models their environment. 
 
Next, we could work in a team (including the customer, UberCloud, myself, Microsoft and 
Nvidia) to scope the project and create a Statement of Work (SOW): this will also specify 
what data, data structures and interfaces are needed. In some cases, it may be possible to 
just acquire and integrate customer’s data4. In the SOW, we will also investigate what ML 
models are more suitable to the customer’s use case. The next step will be a proof of 
concept prior to production-ready applications. 
 
FINAL UPDATE 
Microsoft has released an updated version of its predictive maintenance demo version as 
part of their GitHub open source samples initiative: this version promises the following new 
features: 
 
• Training and operationalization using Azure Machine Learning Service 
• Model training on Azure Databricks cluster (gaining 1 order of magnitude in speed) 
• Prediction Serving using Azure container instance 
• Minor changes include: 

o Replacement of pandas data frame manipulation to spark data 
o Addition of a features (variables) importance plot 
o Slight modification to existing Exploratory Data Analysis (EDA) plots. 

 
While our plan going forward calls for testing this new version, at this time we cannot 
publish any usage experience on it. If you – the reader – are interested in a joint exploration 
of this new version please contact us. 
 
From an initial look at the new repository, it appears that the functional parts of the 
application are aligned with what we have already reported in this case study. 
 

 
Case Study Authors – Joseph Pareti and Yassine Khelifi 

 
                                                           
4 Some advice here: https://gallery.azure.ai/Collection/Predictive-Maintenance-Modelling-Guide-1  

http://www.vargroupdigital.it/analytics/
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://gallery.azure.ai/Collection/Predictive-Maintenance-Modelling-Guide-1
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APPENDIX: Implementation notes: Azure resources 
 
This Appendix is mostly useful for developers and end-users who want to work with this 
application, and for technical staff that plan to use Azure services for data science. We’ll 
review the details of the configuration in use. First, if not yet done, you need to subscribe 
with Azure. Next, you will access the Azure dashboard, and then your Data Science Virtual 
Machine (DSVM) and Azure blob storage; Microsoft will bill you monthly on a usage basis:5 
 

 
 

Figure 2: Overview of the DSVM in the Azure cloud  

 
The next diagram shows the resources available in the DSVM: 
 

 
 

Figure 3: Putty terminal on the DSVM running Ubuntu 
 

                                                           
5 To save money, it’s a good idea to shut down your DSVM when you don’t use it ☺ My monthly fees so far 
range from $60-$300 depending on consumption. More info at https://azure.microsoft.com/en-us/pricing/  

https://portal.azure.com/#dashboard/private/58af4fdd-7493-43b2-b37a-948de3ae0011
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoft-ads.linux-data-science-vm-ubuntu
https://azure.microsoft.com/en-us/pricing/
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Implementation notes: code changes to build the model 
This is about code and configuration changes that were necessary to achieve a fully 
functional demo version. The figure below is relevant when you build the model: 
 

 
Figure 4: Code and configuration changes required to build the Predictive Maintenance (PdM) model 

 
Implementation notes: how to run the model 
If you are an end-user, you just need to consume the application as-a-service. At the end of 
Notebook 4, a zip file is created that contains the asset files needed to deploy the 
application as a service. This file can be provided by me. To run the application, you need a 
supported platform such as a system running Windows or Linux Ubuntu and with Docker 
installed in it. First create, then run the service on your system. To set the service up, follow 
the guidelines in “how to operationalize the model”. Finally, a study (done by Microsoft 
support) shows important features that influence the likelihood of machine failure. 
 

The following diagram shows the command to create the service and highlights the input 
“asset” files: 
 

 
Figure 5: Command to create the service in Ubuntu; the input files are highlighted 

 
After that you run the service: with the input variables defined below the system predicts no failure: 
az ml service run realtime -i amlworkbenchpdmwebservice -d "{\"input_df\":  
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[{\"rotate_rollingmean_36\": 450.0384342542265, \"age\": 9, \"rotate_rollingstd_12\": 0.0, 
\"volt_rollingstd_36\": 0.0, \"volt_rollingstd_12\": 0.0, \"volt_rollingstd_24\": 0.0, 
\"pressure_rollingstd_36\": 0.0, \"error1sum_rollingmean_24\": 0.0, \"rotate_rollingmean_12\": 
445.7130438343768, \"machineID\": 27, \"vibration_rollingmean_24\": 40.302192663278625, 
\"comp4sum\": 399.0, \"error4sum_rollingmean_24\": 0.0, \"pressure_rollingmean_36\": 
99.1626730910439, \"pressure_rollingstd_12\": 0.0, \"vibration_rollingmean_12\": 
39.69610732198209, \"comp3sum\": 444.0, \"error2sum_rollingmean_24\": 0.0, 
\"error5sum_rollingmean_24\": 0.0, \"pressure_rollingmean_24\": 100.42784289855126, 
\"pressure_rollingmean_12\": 103.46853199581041, \"vibration_rollingstd_36\": 0.0, 
\"vibration_rollingstd_12\": 0.0, \"rotate_rollingstd_36\": 0.0, \"vibration_rollingstd_24\": 0.0, 
\"volt_rollingmean_36\": 166.5072079613422, \"vibration_rollingmean_36\": 39.86004229336383, 
\"rotate_rollingstd_24\": 0.0, \"comp2sum\": 564.0, \"pressure_rollingstd_24\": 0.0, 
\"volt_rollingmean_24\": 166.69782028530955, \"comp1sum\": 504.0, \"volt_rollingmean_12\": 
162.37456132546583, \"rotate_rollingmean_24\": 444.92430808877185, 
\"error3sum_rollingmean_24\": 0.0}, {\"rotate_rollingmean_36\": 452.58602482190344, \"age\": 9, 
\"rotate_rollingstd_12\": 7.358009183124642, \"volt_rollingstd_36\": 1.2113288898088435, 
\"volt_rollingstd_12\": 1.7162303092954838, \"volt_rollingstd_24\": 1.1327450423992658, 
\"pressure_rollingstd_36\": 0.360813923769749, \"error1sum_rollingmean_24\": 0.0, 
\"rotate_rollingmean_12\": 448.82482383859184, \"machineID\": 27, 
\"vibration_rollingmean_24\": 39.8762193116053, \"comp4sum\": 399.0, 
\"error4sum_rollingmean_24\": 0.0, \"pressure_rollingmean_36\": 99.18126302139088, 
\"pressure_rollingstd_12\": 1.3059590035299573, \"vibration_rollingmean_12\": 
40.534215611846555, \"comp3sum\": 444.0, \"error2sum_rollingmean_24\": 0.0, 
\"error5sum_rollingmean_24\": 0.0, \"pressure_rollingmean_24\": 98.84197839575184, 
\"pressure_rollingmean_12\": 100.13428527324218, \"vibration_rollingstd_36\": 
0.12802019423837702, \"vibration_rollingstd_12\": 0.5581845837178677, \"rotate_rollingstd_36\": 
1.3063227195446807, \"vibration_rollingstd_24\": 0.26866456414969686, \"volt_rollingmean_36\": 
166.8633264221902, \"vibration_rollingmean_36\": 39.83194043387068, \"rotate_rollingstd_24\": 
6.2252625510326345, \"comp2sum\": 564.0, \"pressure_rollingstd_24\": 0.5506261833397947, 
\"volt_rollingmean_24\": 168.8315798036505, \"comp1sum\": 504.0, \"volt_rollingmean_12\": 
169.6342364499553, \"rotate_rollingmean_24\": 455.68853459771736, 
\"error3sum_rollingmean_24\": 0.0}, {\"rotate_rollingmean_36\": 452.6366978657443, \"age\": 9, 
\"rotate_rollingstd_12\": 12.545522310840685, \"volt_rollingstd_36\": 0.4066137169118576, 
\"volt_rollingstd_12\": 1.9026812928919759, \"volt_rollingstd_24\": 1.388783538126311, 
\"pressure_rollingstd_36\": 0.40800640702349306, \"error1sum_rollingmean_24\": 0.0, 
\"rotate_rollingmean_12\": 462.5522453568429, \"machineID\": 27, \"vibration_rollingmean_24\": 
39.48080284488274, \"comp4sum\": 398.0, \"error4sum_rollingmean_24\": 0.0, 
\"pressure_rollingmean_36\": 99.92595364177775, \"pressure_rollingstd_12\": 
0.30398746497620055, \"vibration_rollingmean_12\": 39.21822301136402, \"comp3sum\": 443.0, 
\"error2sum_rollingmean_24\": 0.0, \"error5sum_rollingmean_24\": 0.0, 
\"pressure_rollingmean_24\": 98.70475189546528, \"pressure_rollingmean_12\": 
97.5496715182615, \"vibration_rollingstd_36\": 0.06733738203927228, 
\"vibration_rollingstd_12\": 0.33150005427630586, \"rotate_rollingstd_36\": 0.726203655443797, 
\"vibration_rollingstd_24\": 0.2757178837764945, \"volt_rollingmean_36\": 164.9839282666808, 
\"vibration_rollingmean_36\": 39.16084871098736, \"rotate_rollingstd_24\": 2.2615583783043336, 
\"comp2sum\": 563.0, \"pressure_rollingstd_24\": 0.43573594568766316, \"volt_rollingmean_24\": 
165.47787140830766, \"comp1sum\": 503.0, \"volt_rollingmean_12\": 168.0289231573457, 
\"rotate_rollingmean_24\": 454.4666253135592, \"error3sum_rollingmean_24\": 0.0}]}" 
 

The following diagram shows the input variables to the model leading to a component-2 
failure: 
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Figure 6: Sample run predicting machine failure (please enlarge your document) 

 

Implementation notes: how to operationalize the model 
 
To be able to run the application as a service on an Ubuntu server as described before, you must first 
deploy it according to the documentation. In addition, the following needs to be addressed: 

 
1. You must register with all services per user’s guide, in particular 

Microsoft.ContainerRegistry. In my initial attempt, I registered this service after having 
created the model management: this caused a conflict, and the solution was to delete and 
re-create the model management. 

2. The sequence of commands that led to creation and deployment of the service on an 
Ubuntu server is as follows, and it differs from the documentation: 
$ az ml env delete -n pdmmodelmanagement1 -g jp-resource-group-PAID # delete pre-
existing model management 
$ unzip o16n.zip # the kit contains the asset files produced in notebook 4, and must be 
unzipped in the current working directory  
$ az ml env setup --location westeurope -g jp-resource-group-PAID --name  
pdmmodelmanagement9 # assign new model management name 
$ az ml env show -g jp-resource-group-PAID -n pdmmodelmanagement9 
$ az ml env set -g jp-resource-group-PAID -n pdmmodelmanagement9 
$ az ml account modelmanagement show 
$ az ml service create realtime -f pdmscore.py -r spark-py -m pdmrfull.model -s 
service_schema.json --cpu 0.1 -n amlworkbenchpdmwebservice 
 pdmrfull.model # the files specified as arguments are from the asset kit o16n.zip 

 
After that, you can run the service as shown in Figure 5. 
 
Note the following steps above differ from the documentation: 
 

1. SKIP az ml experiment prepare -c docker 
2. Use  

a. az ml env set -g jp-resource-group-PAID -n pdmmodelmanagement 
b. In lieu of 
c. az ml env set --resource-group <RESOURCE_GROUP> --cluster-name 

pdmmodelmanagement 
 

Features influence study 
One may ask what are the most important variables leading to a failure. For this purpose, Microsoft 
has provided the following parametric study: 

https://docs.microsoft.com/en-us/azure/machine-learning/desktop-workbench/deployment-setup-configuration
https://docs.microsoft.com/en-us/azure/machine-learning/desktop-workbench/deployment-setup-configuration
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     Figure 7: Impact of input variables on likelihood of failure (courtesy of Microsoft) 
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Team 213 

Deep Learning in Computational Fluid 
Dynamics in the Microsoft Azure Cloud 

 

                          
                    Courtesy, Thurey Group, TUM  

 

MEET THE TEAM 
End-User: Joseph Pareti, Artificial Intelligence Consultant 
Software Provider: Nils Thurey and Mengyu Chu, Technical University of Munich, Germany 
Resource Provider: Microsoft Azure Cloud 
UberCloud Support: Wolfgang Gentzsch, President, The UberCloud 
Microsoft Support: Yassine Khelifi, Support Escalation Engineer at Microsoft. 
 

INTRODUCTION: USING ARTIFICIAL INTELLIGENCE TO SPEED UP A CFD APPLICATION 
In this work, Convolution Neural Networks (CNN) are used for computing feature descriptors for 
density and velocity fields in smoke clouds. The CNN learns from a repository of computed results 
using the MANTAFLOW application. The CNN training, using TensorFlow, determines flow 
descriptors for density and velocities and a flow similarity score. In addition, the model includes a 
deformation limiting patch advection with anticipation module which enhances the stability and 
performance. 
 
When given a coarse simulation, the model associates with a high degree of confidence a more 
accurate simulation that is retrieved from a database of computed results. When compared with a 
traditional approach, the CNN-based approach provides much faster time to solution with 
comparable accuracy as when using a sufficiently fine grid. 
 
There is an interest among CAE users to accelerate the time-to-solution of numerically intensive 
applications, in order to run a sufficient number of cases for product optimization using a parametric 
approach. Hence it is expected that more applications will become available that use deep networks 
to either replace compute intensive modules, such as FluidNet, or replace the entire computation as 
described. Another reason to select this application for an UberCloud case study was the interest by 
the developer at TUM to contribute to our work in the form of Q&A, troubleshooting, etc. 
 
Finally, we’ve made use of Microsoft Azure support for questions related to the configuration of the 
Data Science Virtual Machine (DSVM). If you are interested to run the application and you need 
more details than explained in this report, please send us a request at joepareti54@gmail.com or 
call us at +49 1520 1600 209. 

“Applying Deep Learning to highly complex 

compute intensive CFD by creating a 

database of synthetic flow descriptors that 

correlate with a given complex problem, so 

that the accurate solution could be 

inferred by a coarse-grid and much less 

compute intensive solution is one of the 

great benefits of this method.”  

 

 

 

 

https://github.com/RachelCmy/mantaPatch
http://mantaflow.com/install.html
https://cims.nyu.edu/~schlacht/CNNFluids.htm
mailto:joepareti54@gmail.com
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USE CASE 
Predicting smoke flows is a common task in computer graphics using CFD models. This can be done 
in 2D or 3D. Because an accurate calculation of flow properties is time consuming, researchers at the 
TUM developed new algorithms that benefit from deep learning technologies to dramatically reduce 
time-to-solution. While this paper is about a specific flow problem, with a specific solver 
(MANTAFLOW), it should be regarded as a feasibility study, and hence we encourage general 
purpose CFD users to look beyond the box, and come back to us with their specific CFD (or CAE) use 
case that could also benefit from deep learning or machine learning approaches. 
 
At TUM, Nils Thurey and Mengyu Chu, in their work about Data-Driven Synthesis of Smoke Flows 
with CNN-based Feature Descriptors, take the following perspective to efficiently realize high-
resolution flows (see Figure 1): they propose to use a fluid repository, consisting of a large collection 
of pre-computed space-time regions. From this, they synthesize new high-resolution volumes. In 
order to very efficiently find the best match from this repository, they propose to use novel, flow-
aware feature descriptor. they ensure that L2 distances in this feature space will correspond to real 
matches of flow regions in terms of fluid density as well as fluid motion, so that they can very 
efficiently retrieve entries even for huge libraries of flow datasets. 
 

 
Figure 1: Realizing high-resolution flows efficiently by using a fluid repository, consisting of a large collection 

of pre-computed space-time regions. 

SYSTEM ARCHITECTURE 
In this application, we first built the MANTAFLOW application to calculate the exact data that will be 
used to train the deep network. There are 2D and 3D datasets. Next, we ran MANTAFLOW. The 
output data of MANTAFLOW will be fed in TensorFlow to train the deep network. Once the network 
is trained we were able to make inferences and compare “exact” results (i.e. from MANTAFLOW 
with a fine grid) and results from the deep network. For the interested reader, all steps listed above 
are explained in detail in the Appendix. The paragraph on Results shows the exact and approximated 
output for the smoke_tiled example. 
 

RESULTS 
We achieved the following results: 

1. An Azure-based demo version of the application that uses deep learning to significantly 
reduce time-to-solution in a CFD application. 

2. A demo version that was employed for a specific example called the smoke_tiled problem. 
 

In Figure 2 we compare the exact solution (right) with the approximate solution (left) for 1 sample: 

http://ge.in.tum.de/publications/2017-sig-chu/
http://ge.in.tum.de/publications/2017-sig-chu/
https://www.tensorflow.org/
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Figure 2: Smoke flow approximated by deep learning (left) vs. accurate MANTAFLOW calculation (right). 

 
 

PERFORMANCE BENCHMARKING 
This is out-of-scope for the current project. On our DSVM, the test cases presented in this report run 
in a few minutes; the exercise was just intended to validate the application and not to record any 
performance data. 
 

BENEFITS 
There are several R&D organizations working on deep learning tools to accelerate time-to-solution 
of CAE applications. In CFD, the deep learning approach varies: 
 

1. One could aim at creating a database of synthetic flow descriptors that correlate with a 
given problem, so that the accurate solution could be inferred by a coarse grid solution 
(which is obviously less compute intensive). This is the approach taken by TUM in this 
report. 

2. Another way to exploit the power of deep learning is by replacing parts of the computation 
by means of a deep network that simulates the exact behavior; this is the case of FluidNet 
where the non-linear Navier-Stokes partial differential equations are solved numerically, 
while the Poisson pressure correction term is simulated by a deep network instead of being 
calculated using traditional algorithms like sparse matrix solvers.  

3. Or one could accurately calculate a number of cases, and then train the network using those 
results so that the network can predict the fluid flow based on geometry alone; this is the 
approach taken by Renumics in a recent UberCloud case study.6 
 

If you are a CAE engineer, you may want to follow the methodology presented in this report and 
then possibly adapt it to your real problem, or work with us to design a deep learning-based 
solution. 
   
CONCLUSION & RECOMMENDATIONS 
The subject matter of this report is a demonstration how engineering simulations like computational 
fluid dynamics can benefit from Deep Learning with TensorFlow. Engineers are encouraged to 
                                                           
6 Team 211: Deep Learning for Steady-State Fluid Flow Prediction in the Advania Data Centers Cloud 
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approach us, get inspired for their work, and test this demo version “as-is”, to evaluate how their 
own environment can benefit from this or a similar approach. 
 
As a next step for interested readers, we suggest to work together in a team (including the 
customer, Joseph Pareti, UberCloud, Microsoft, and Nvidia) to identify an internal application, scope 
the project, and create a Statement of Work (SOW): this will specify what algorithm can be used that 
takes advantage of Deep Learning / Machine Learning. The next step will be a Proof of Concept prior 
to production ready applications. 
 

 
Case Study Author – Joseph Pareti and Wolfgang Gentzsch 
 
 
 
 
 
 
 

APPENDIX: Implementation notes: Azure resources 
 
In this paragraph, we’ll review the details of the configuration in use on Azure, if you are relatively 
new to the field of Deep Learning and are interested in working with this or a similar project. 
 
First, you need to subscribe with Azure, access the Azure dashboard, and then your Data Science 
Virtual Machine (DSVM) and Azure blob storage. DSVM is a family of Azure Virtual Machine images 
published by Microsoft on the Azure marketplace, specially built for Machine learning, deep learning 
and analytics. It contains a comprehensive set of popular tools used in data analytics, machine 
learning and AI development – all pre-installed, configured and tested so your data science 
environment is ready to go. Microsoft will bill you monthly on a per usage basis:7 
 

 
Figure 3: Overview of the DSVM in the Azure cloud  

 

                                                           
7 To save money, it’s a good idea to shut down your DSVM when you don’t use it ☺ My monthly fees so far 
range from $60-$300 depending on consumption. More info at https://azure.microsoft.com/en-us/pricing/ 

https://portal.azure.com/#dashboard/private/58af4fdd-7493-43b2-b37a-948de3ae0011
https://www.youtube.com/watch?v=pHYrQo2q1ho
https://www.youtube.com/watch?v=pHYrQo2q1ho
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The following diagram shows the resources we had available in the DSVM: 
 

           
Figure 4: Putty terminal on the DSVM running Ubuntu 

 

Building and running the MANTAFLOW application, training the network and 
calculating the smoke_tiled problem 
 
In this paragraph we’ll present the log file from the DSVM. 
 

Setup environment 
 

$ pwd 
/home/joepareti54/TUM-validate 
 
$ sudo apt-get install cmake g++ git python3-dev qt5-qmake qt5-default 
Reading package lists... Done 
Building dependency tree 
Reading state information... Done 
g++ is already the newest version (4:5.3.1-1ubuntu1). 
python3-dev is already the newest version (3.5.1-3). 
cmake is already the newest version (3.5.1-1ubuntu3). 
git is already the newest version (1:2.7.4-0ubuntu1.4). 
qt5-qmake is already the newest version (5.5.1+dfsg-16ubuntu7.5). 
qt5-default is already the newest version (5.5.1+dfsg-16ubuntu7.5). 
0 upgraded, 0 newly installed, 0 to remove and 110 not upgraded. 
$ git clone https://bitbucket.org/mantaflow/manta.git 
Cloning into 'manta'... 
remote: Counting objects: 7350, done. 
remote: Compressing objects: 100% (3131/3131), done. 
remote: Total 7350 (delta 5113), reused 6275 (delta 4188) 
Receiving objects: 100% (7350/7350), 2.92 MiB | 3.87 MiB/s, done. 
Resolving deltas: 100% (5113/5113), done. 
Checking connectivity... done. 
joepareti54@JP-Paid-UBUNTU-DSVM:~/TUM-validate$ 
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Build manta executable 
$ pwd 
/home/joepareti54/TUM-validate/manta/build 
$cmake .. -DGUI=ON -DOPENMP=ON 2>&1 | tee -a cmake-July-27-2018.log 
$make -j4 2>&1 | tee -a make-July-27-2018.log 
Start virtual frame buffer because I cannot route graphic display from Azure  
$  Xvfb :99 -screen 0 640x480x24 & 
[1] 9098 
$ export DISPLAY=:99 
$ 
 

Build the training dataset for the smoke_tiled problem: 
 

$ pwd 
/home/joepareti54/TUM-validate/manta/tensorflow/example1_smoke_tiled 
$ ls 
manta_genSimData.py  runTests.sh        tf_train_keras.py  tilecreator.py 
README.txt           tf_genManySims.py  tf_train.py 
Set path to the manta build directory: 
$ export PATH=/home/joepareti54/TUM-validate/manta/build/:$PATH 
 

Follow the instruction in README.txt, build the training dataset: 
 
$ manta manta_genSimData.py 2>&1 | tee -a manta-July27-2018.log 
 
Version: mantaflow 0.12 64bit fp1 omp commit 15eaf4aa72da62e174df6c01f85ccd66fde20acc from 
Jul 27 2018, 09:28:45 
Loading script 'manta_genSimData.py' 
Noise tile loaded from file waveletNoiseTile.bin 
Build info: mantaflow 0.12 64bit fp1 omp commit 15eaf4aa72da62e174df6c01f85ccd66fde20acc 
from Jul 27 2018, 09:28:45 
Current time t: 0.0 
 
ICP/mICP pre-conditioning only supported in 3D for now, disabling it. 
Current time t: 0.5 
 
Current time t: 1.0 
…. 
Writing grid density to uni file ../data/sim_1001/frame_0199/density_low_1001_0199.uni 
Writing grid vel to uni file ../data/sim_1001/frame_0199/vel_low_1001_0199.uni 
Writing grid xl_density to uni file ../data/sim_1001/frame_0199/density_high_1001_0199.uni 
Script finished. 
0 centre [+82.057129,+106.976028,+0.500000] radius 13.14271983426271 other 
[+0.992315,+1.022525,+1.000000] 
1 centre [+159.852737,+121.765602,+0.500000] radius 17.06393042010118 other 
[+1.029323,+1.004425,+1.000000] 
2 centre [+132.451920,+178.964081,+0.500000] radius 9.418921693160279 other 
[+1.033331,+1.021694,+1.000000] 
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3 centre [+112.929214,+81.441391,+0.500000] radius 17.09621443848919 other 
[+1.006732,+1.024593,+1.000000] 
4 centre [+147.330032,+157.783569,+0.500000] radius 10.310567918335074 other 
[+1.048792,+0.965142,+1.000000] 
5 centre [+78.095718,+95.134720,+0.500000] radius 11.093868114591041 other 
[+1.019041,+1.040684,+1.000000] 
6 centre [+169.415039,+109.276825,+0.500000] radius 9.889896197742017 other 
[+0.992716,+0.957080,+1.000000] 
7 centre [+153.345779,+77.587715,+0.500000] radius 15.978795998555917 other 
[+0.999475,+0.968100,+1.000000] 
8 centre [+82.063469,+131.189926,+0.500000] radius 12.422082145402 other 
[+0.978788,+0.955976,+1.000000] 
9 centre [+151.872528,+122.567413,+0.500000] radius 14.995933928095454 other 
[+1.019633,+0.989048,+1.000000] 
10 centre [+95.823654,+117.936523,+0.500000] radius 9.356802719393698 other 
[+1.000962,+1.048095,+1.000000] 
11 centre [+113.804543,+142.279907,+0.500000] radius 13.028546502477788 other 
[+0.993923,+1.049784,+1.000000] 
Using sim dir '../data/sim_1001/' 
 
 
 
 

Finally, train the network using TensorFlow: 
 
There is a typo in the README.txt file: the script to be used is tf_train.py 
 
$ python tf_train.py  out 0 fromSim 1000 toSim -1 trainingEpochs 10000 2>&1 |tee -a trainNW-
July27-2018.log 
 
 

 
 
 
… 
Epoch 10000/10000 - Avg. cost= 254.125065002 - Avg. validation cost= 1135.869055176 
200 epochs took 6.60 seconds. 
 
*****TRAINING FINISHED***** 
 
Training needed 5.51 minutes. 
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To apply the trained model, set "outputOnly" to True, add "out 1 loadModelTest 1" to script call 
Use the trained Network to generate the output 
 

$ python tf_train.py  out 1 fromSim 1000 toSim -1 loadModelTest 1 2>&1 |tee -a GenOutput-
July27-2018.log 
 
2018-07-27 10:30:07.319304: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU 
supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 
/anaconda/envs/py35/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: 
Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In 
future, it will be treated as `np.float64 == np.dtype(float).type`. 
from ._conv import register_converters as _register_converters 
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Team 214 

Demonstrating a Machine Learning Model for 
Predictive Maintenance on Microsoft Azure 

Part II * 

             
                        Picture, Courtesy:  VIZIYA Corporation 

 
MEET THE TEAM 
End-User: Joseph Pareti, Artificial Intelligence Consultant 
Software Provider: Open source Predictive Maintenance template by the Microsoft Azure Team 
Resource Provider: Microsoft Azure Cloud 
UberCloud Support: Wolfgang Gentzsch, President, The UberCloud 
Microsoft Support: Yassine Khelifi, Support Escalation Engineer at Microsoft. 

 
USE CASE 
The Predictive Maintenance model described in this report is open source and can be applied to 
different equipment types for which telemetry data and maintenance data records are available. The 
implementation described herein assumes an Azure cloud subscription and some operating 
knowledge on Azure. 
 
Four machine types are considered, each machine has four components, and there is telemetry data 
available on voltage, vibration, speed, and pressure, as well as maintenance records (indicating 
when last a component was replaced on what machine), error logs (not necessarily implying failure), 
machine characteristics, and how long each machine has been in service. The model is built in four 
stages each of which is implemented in a Jupyter notebook running Python version3: 
 

1. Data ingestion 
2. Feature engineering 
3. ML model 
4. Operationalization 

 

*) Note: This document is the continuation of our case study 212, about a recent release of the predictive 
maintenance software by Microsoft. The functionality of the model, and predictive precision and accuracy are 
the same as in the first release, however the current implementation is based on Azure Machine Learning 
Services and databricks that significantly reduces time-to-solution, while simplifying the end-user’s 
administration task, since the entire application runs in Azure. Therefore, the desk-top front end, “Azure 
Machine Learning Workbench” which was a required component in the first release, has been removed. 

“This Machine Learning study 
(update from Team 212) is for 
predictive maintenance 
demonstration and learning 
purposes, and may be used as 
a baseline for the reader’s 
own custom application.” 

 

 

 

 

https://www.viziya.com/resource/reactive-vs-preventive-vs-predictive-maintenance/
https://github.com/Azure/AMLSamples/tree/master/predictive_maintenance
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Notebook 1: Data ingestion is about accessing the datasets from blob storage, cleaning the data, 
and storing the data as a SPARK dataframe in cluster for further processing by the next notebooks. 
 
Notebook 2: Feature engineering loads the data sets created in the Data Ingestion notebook and 
combines them to create a single data set of features (variables) that can be used to infer a machine 
health condition over time.  
The goal is to generate a single record for each time unit within each asset. The record includes 
features and labels to be fed into the machine learning algorithm. 

Predictive maintenance takes historical data, marked with a timestamp, to predict current health of 
a component and the probability of failure within some future window of time. These problems can 
be characterized as a classification method involving time series data. Time series, since we want to 
use historical observations to predict what will happen in the future. Classification, because we 
classify the future as having a probability of failure. 

Note that this step requires significant data science and programming skills, however it is separate 
from classical Machine Learning tasks. It also requires domain expertise in order to focus on relevant 
features for the task at hand. 
 
Notebook 3: The ML model uses the labeled feature data set constructed in notebook 2, it loads the 
data and splits it into a training and test data set. We then build a machine learning model (a 
decision tree classifier or a random forest classifier) to predict when different components within 
our machine population will fail.  
 
Two different classification model approaches are available in this notebook: 
 

• Decision Tree Classifier: Decision trees and their ensembles are popular methods for the 
machine learning tasks of classification and regression. Decision trees are widely used since 
they are easy to interpret, handle categorical features, extend to the multiclass classification 
setting, do not require feature scaling, and are able to capture non-linearities and feature 
interactions. 

• Random Forest Classifier: A random forest is an ensemble of decision trees. Random forests 
combine many decision trees in order to reduce the risk of overfitting. Tree ensemble 
algorithms such as random forests and boosting are among the top performers for 
classification and regression tasks. 

Notebook 4: Operationalization, loading the model from the Code/3_model_building.ipynb Jupyter 
notebook and the labeled feature data set constructed in the Code/2_feature_engineering.ipynb 
notebook in order to build the model deployment artifacts. The notebook is used to deploy and 
operationalize the model and is built on the Azure Machine Learning service SDK. 
 
An appendix at the end of this report provides additional detail on the 4 notebooks. If you whish a 
complete input/output set for this use case, e.g. to compare with your own work, please send us 
e-mail to joepareti54@gmail.com. 
 

AZURE MACHINE LEARNING SDK ON AZURE DATABRICKS 
The ML SDK and databricks are options to implement custom AI which require custom data and 
model training. The Azure ML SDK defines a workspace that contains compute and storage 
resources, as well as models, experiments (i.e. all attempts with different parameters), and 
deployment services such as Docker images. 

https://docs.microsoft.com/en-us/python/api/overview/azure/ml/intro?view=azure-ml-py#experiment
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Figure 1: Azure Machine Learning Workspace. 

 
Databricks is an architecture for Spark environments that provides out-of-the-box support for 
common interfaces and supports at-scale Machine Learning deployments: 

• Azure Databricks is a fully-managed, cloud-based Big Data and Machine Learning platform. 

• It empowers developers to accelerate AI and innovation by simplifying the process of 
building enterprise-grade production data applications 

• It is built on a joint effort by the team that started Apache Spark and Microsoft 

• It is a single platform for big data processing and Machine Learning.  

 
 

 
 

Figure 2: Azure Databricks. 
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SYSTEM ARCHITECTURE USED FOR THIS CASE STUDY 
The following is a list of the software components that must be implemented: 

• A workspace in Azure  

• A development environment for ML  

• An Azure Databricks cluster deployed with the following configuration: 

o Databricks Runtime version: (latest stable release) (Scala 2.11) 

o Python version: 3 

o Driver/Worker type: Standard_DS13_v2 

o Python libraries installed: 

ipython==2.2.0, pyOpenSSL==16.0.0, psutil, azureml-sdk[databricks], 
cryptography==1.5 
 

In the implementation for this case study, the Databricks cluster includes 2-8 nodes that are DS3_v2 
virtual machines, which is a low-cost option to demonstrate the feasibility of the application. screen 
dumps below provide additional detail on utilized software components. 

 

 
 

Figure 3: Azure Machine Learning Workspace; use the “view forum” option (bottom right) to ask Microsoft 
product managers for advice. 

https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-get-started
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#aml-databricks
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Figure 4: Databricks Workspace. 

 

 

Figure 5: Databricks cluster; set the terminate flag to avoid being charged after the job is done; enable 
autoscaling to allow databricks to grow or shrink according to job requirement. 
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Figure 6: Libraries on databricks cluster. Left: excerpt from the User’s guide, Right: configuration used for 
this case study. 

 
 

 
Figure 7: PyPI package on databricks cluster. Left: User’s guide, Right: configuration used for this case study. 

 

RESULTS 
The result of this study is an enhanced demo version compared to the one reported in case study 
212. If you have an Azure subscription, you can build the demo by yourself starting here. If you need 
a step-by-step tutorial on how to deploy Azure ML SDK and databricks, you can use this youtube 
video. 
 

PERFORMANCE BENCHMARKING 
This demo was run on a databricks cluster with 2 to 8 nodes that are Standard_DS13_v2: the table 
below provides performance figures for the current and previous release, which was tested on a 
single DSVM with 4 vCPUs and 16 GB RAM. Use these figures to get a feel for improvement and not 
as absolute values. 

 
Release Notebook 2 Time-to-solution Notebook 3 Time-to-solution 

previous 71 minutes 10 minutes 

current 27 minutes 21 minutes 

https://docs.databricks.com/user-guide/libraries.html#workspace-libraries
https://docs.databricks.com/user-guide/libraries.html#workspace-libraries
https://github.com/Azure/AMLSamples/tree/master/predictive_maintenance
https://www.dataplatformgeeks.com/azure-machine-learning-sdk-parashar-shah-recorded-webinar-resources/
https://www.dataplatformgeeks.com/azure-machine-learning-sdk-parashar-shah-recorded-webinar-resources/
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CONCLUSION & RECOMMENDATIONS 
As recommended by Microsoft, we have run the predictive maintenance application using the new 
software architecture including Azure Machine Learning SDK and Azure Databricks.  
 
The data, features set, labels and model are the same as in the previous release, therefore the 
performance is also approximately the same. 
 
The significant advantages of the current release compared to the previous one, are: 
 

• Shorter time to solution, reported in the paragraph Performance Bench-marking. 

• Easier administration, because the entire application runs in Azure, i.e. the client-side 
workbench component has been removed. 
 

Predictive Maintenance is one of the most popular ML applications, and one that is widely 
considered prime time for productive deployment: custom solutions exist, as well as off-the-shelf 
packages, and software building blocks that may be sold with consulting services. We have recently 
met with several companies across the world that either implement or propose predictive 
maintenance for production. These companies are SEW, Duerr, Compacer, Siemens, SAS, and more.  
 
One benefit of this case study is that it is built on open source software, and hence it can be adapted 
to support a customer’s proof of concept for predictive maintenance of machines, industrial or end-
user equipment, plants, etc.  
 
While the available results are promising in a demo environment, a significant effort to customize 
the model for real use cases would be needed, especially to build features that effectively classify 
failures. This effort requires both data science skills and domain expertise.  
 
Potentially, Microsoft recently announced Automated Machine Learning could help to optimize the 
model precision by iteratively determining the best hyperparameters in a very effective, automated 
way in order to accelerate time-to-market for the application.   
 
If you are interested to implement predictive maintenance in your environment using ML, we can 
offer a discovery workshop and Scope of Work service in collaboration with industry partners 
Microsoft and Nvidia if appropriate.  Please approach joepareti54@gmail.com.  

 
 

APPENDIX 
 
If you are a developer, you may find this information useful: in this paragraph, we are providing a 
step-by-step qualitative description of the model. Note that the code is not given here, but if you 
want to build the demo by yourself, and want to compare your results with a complete reference 
data set, please send e-mail at joepareti54@gmail.com. All (Jupiter) notebooks in this demo are 
written in Python 3. 
 

 Notebook 1 – Data ingestion 
• Import needed libraries such as pandas, seaborn, matplotlib 

• Define comma separated value (csv) files that contain: 
o Machine data 

https://www.sew-eurodrive.de/services/predictive-maintenance/predictive-maintenance.html
https://www.durr-group.com/en/digital-at-duerr/smart-services/preventive-maintenance/
https://compacer.com/en/solutions/predictive-maintenance/
https://www.plm.automation.siemens.com/global/en/topic/mindsphere-predictive-maintenance-nurture/32145
https://www.arcweb.com/blog/siemens-sas-partner-deliver-ai-embedded-iot-analytics-edge-cloud
https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-automated-ml
mailto:joepareti54@gmail.com
mailto:joepareti54@gmail.com
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o Maintenance history 
o Error logs 
o Telemetry data: voltage, rotation speed, pressure, vibration 
o Failure events 

• Convert data into spark format 

• Plot some variables for verification 

• Write data to Azure blob storage for processing by next 
notebooks 

 
Notebook 2 – Features engineering 
Note that the features are in the columns, used for classifying failures. 
 

• Set up the environment by importing libraries and for plotting 

• Set timers for performance measurements (note that you have 
to use “Run all”, which we did not use in our own testing, hence the figures in the paragraph 
“performance benchmarking” are not accurate: the real performance ought to be better 
than reported) 

• Read in the data 

• Calculate means and standard deviations 

• Choose the timestamps to align the data 

• Define rolling windows to build lag features (12h, 24h, 36h) 

• Calculate lag values 

• Create a column for each error id 

• Join the telemetry data with error data 

• Create a column for each component replacement 

• Align component information on telemetry features timestamps 

• For component 1 records, get on each machine the last 
replacement date for each timepoint, and calculate the number of days between 
replacements: this is expected to be a good failure predicting feature because the longer a 
component is in service, the higher the probability of failure  

• Same operations as above for components 2,3,4 

• Join component 3 and 4 

• Join component 2, 3, and 4 

• Join component 1 to 2, 3, 4 

• Choose the timestamp to align the data 

• Collect the data 

• One hot encoding of the variable model 

• Join error features with component maintenance features 

• Join with machine features (static data represented by Boolean 
variables) 

• Clean up unnecessary columns 

• Join telemetry with error, maintenance, machine features to 
create a final feature matrix 

• Map the failure data to final feature matrix 

• Get the frequency of each component failure 

• Lag values to manually backfill: this is because we need to 
predict impending failures so that human intervention in a business-dependent time window 
is possible. For this exercise, a 7 days window is selected  
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• Create label feature 

• Restrict that label to be in the range 0-4 and remove extra 
columns 

• Write labeled feature data to (Azure) storage   

 
Notebook 3 – Model building 

• Import libraries, azureml components and components from 
pyspark.ml for creating pipelines and the model 

• Set timers as in Notebook 2 

• Enter workspace details (subscription id, etc.) 

• Persist workspace information in a json file which will be 
needed in Notebook 4 

• Define list of input columns for modeling; use the known label 
and key variables 

• Assemble features 

• Set maxCategories so features with > 10 distinct values are 
treated as continuous 

• Fit on whole dataset to include all labels in index 

• Split the data into training and test data based on date 

• Train the model: there are 2 options, i.e. decision tree and 
random forest – My experiment uses random forest that is an ensemble of decision trees 
and has less risk of overfitting 

• Chain indexer and model in a pipeline 

• Train the model, this also runs the indexer 

• Make predictions: the pipeline does the same operations on the 
test data 

• Create the confusion matrix for the multiclass predictions: the 
correct predictions are in the main diagonal, values above or below are false alarms, i.e. if 
above, the model predicted failures that did not occur 

• Compute test error based on prediction and true label 

• False positives 

• False negatives 

• Accuracy calculation 

• Calculate precision and recall 

• Save the model 
 

Once the model is trained, we follow up with model registration in Azure ML. i.e model.register 
call. See next paragraph for details. 

 
Notebook 4 – Operationalization 

• Create docker image with scoring script 

• Register image in Azure container registry  

• Deploy image to Azure container instance for prediction serving. For production 
deployment, Azure ML support Azure Kubernetes cluster for serving predictions at scale. 

 

 
Case Study Authors – Joseph Pareti and Yassine Khelifi 
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Thank you for your interest in our free and voluntary UberCloud Experiment 
 

If you, as an end-user, would like to participate in this Experiment to explore hands-on the end-to-
end process of on-demand Technical Computing as a Service, in the Cloud, for your business then 
please register at: http://www.theubercloud.com/hpc-experiment/  
 
If you, as a service provider, are interested in promoting your services on the UberCloud 
Marketplace then please send us a message at https://www.theubercloud.com/help/  
 

Annual UberCloud Compendiums: 
1st Compendium of case studies, 2013:    https://www.theubercloud.com/ubercloud-compendium-2013/  
2nd Compendium of case studies 2014:    https://www.theubercloud.com/ubercloud-compendium-2014/     
3rd Compendium of case studies 2015:    https://www.theubercloud.com/ubercloud-compendium-2015/       
4th Compendium of case studies 2016:    https://www.theubercloud.com/ubercloud-compendium-2016/ 
5th Compendium of case studies 2018:    https://www.theubercloud.com/ubercloud-compendium-2018/  

 

Awards for UberCloud’s Technology and Community Contributions: 
HPCwire Readers Choice Award 2013: http://www.hpcwire.com/off-the-wire/ubercloud-receives-
top-honors-2013-hpcwire-readers-choice-awards/  
HPCwire Readers Choice Award 2014: https://www.theubercloud.com/ubercloud-receives-top-
honors-2014-hpcwire-readers-choice-award/  
Gartner Names The UberCloud a 2015 Cool Vendor in Oil & Gas:   https://www.hpcwire.com/off-the-
wire/gartner-names-ubercloud-a-cool-vendor-in-oil-gas/  
HPCwire Editors Choice Award 2017: https://www.hpcwire.com/2017-hpcwire-awards-readers-
editors-choice/  
IDC/Hyperion Innovation Excellence Award 2017: https://www.hpcwire.com/off-the-wire/hyperion-
research-announces-hpc-innovation-excellence-award-winners-2/  
HPCwire Editors Choice Award 2018: https://www.theubercloud.com/ubercloud-receives-top-
honors-2018-hpcwire-readers-choice-award/  
IDC/Hyperion Innovation Excellence Award 2018: https://insidehpc.com/2018/11/ubercloud-wins-
hyperion-hpc-innovation-excellence-award-neuromodulation-project/  
 
If you wish to be informed about the latest developments in technical computing in the cloud, then 
please register at http://www.theubercloud.com/ and you will get our free monthly newsletter.  
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